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ABSTRACT
Advanced recommender systems usually involve multiple domains ( — ) ‘
(such as scenarios or categories) for various marketing strategies, Scenario 1: @ usera ; ® uvsern
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and users interact with them to satisfy diverse demands. The goal o ﬂgnge Cateﬁthes < o
of multi-domain recommendation (MDR) is to improve the rec- m : .' & ﬁ
ommendation performance of all domains simultaneously. Con- S“"‘"’”"Bz; Cate 2: Shoes :
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ventional graph neural network based methods usually deal with S NAR - Q <8 o3 ) D <
each domain separately, or train a shared model to serve all do- T
mains. The former fails to leverage users’ cross-domain behaviors, Seemio % east & = 0o @ ﬁ @
making the behavior sparseness issue a great obstacle. The lat- I =S :
ter learns shared user representation with respect to all domains, - 1
which neglects users’ domain-specific preferences. In this paper we - . ) )

3 i . Scenarios as domains Categories as domains

propose H>Trans, a hierarchical hypergraph network based cor-
relative preference transfer framework for MDR, which represents
multi-domain user-item interactions into a unified graph to help Figure 1: Illustration of multi-domain recommendation.
preference transfer. H3 Trans incorporates two hyperedge-based The definition of domain can be recommendation scenario
modules, namely dynamic item transfer (Hyper-I) and adaptive user or item categories.

aggregation (Hyper-U). Hyper-I extracts correlative information
from multi-domain user-item feedbacks for eliminating domain

discrepancy of item representations. Hyper-U aggregates users’
scattered preferences in multiple domains and further exploits the
high-order (not only pair-wise) connections to improve user rep-
resentations. Experiments on both public and production datasets
verify the superiority of H3Trans for MDR.
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1 INTRODUCTION

Multi-domain recommendation (MDR) has attracted increas-
ing research attention, the goal of which is to improve the recom-

TCo-first authorship. *Correspondence to: S. Liu. mendation performance of all domains simultaneously. There are

both commonality and diversity among domains. For the common-
ality, multiple domains usually have common users and overlapped
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Graph neural networks (GNNs) have proven to be powerful for
recommendations because user-item interactions are naturally suit-
able for modeling as a graph. Conventional GNN-based methods
for MDR can be divided into two types. The first type deals with
domains separately. That is, for each domain we construct user-
item interaction graph and train model independently, which learns
separate representations for different domains to characterize users’
domain-specific preferences. However, the sparseness of interac-
tion behaviors in emerging domains [3, 5] is a crucial obstacle. The
second type alternatively constructs a unified interaction graph
using multi-domain data and train a shared model to serve all do-
mains [31]. Considering the intrinsic difference among domains’
data distributions, the shared model neglects domain-specific char-
acteristics which results in limited performance.

Researchers have proposed some advanced methods [1, 13, 19,
20, 32] that exert the prominent feature extracting ability of GNN
and incorporate knowledge transfer to alleviate the sparseness. For
example, pretrain-finetune diagram which transfers a pre-trained
graph encoder to initialize the node embedding on the target do-
main is a widely used way [20]. Considering the pretrain-finetune
paradigm only improves the recommendation accuracy on a single
target domain, some works exploit to improve the recommendation
accuracy on both domains simultaneously [13, 32]. Despite their
effectiveness, these methods focus on knowledge transfer between
only two domains. When employed in more than two domains,
they only capture pair-wise relations between domains and dismiss
the high-order connections.

For effective MDR, the key is to learn from the interactions in all
domains and acquire transferable knowledge to obtain better user
representations that characterize their domain-specific preferences.
In this paper we propose H3Trans, a hierarchical hypergraph net-
work based correlative preference transfer framework to improve
MDR. As a general topological structure, a hyperedge can connect
an arbitrary number of nodes, and thus hypergraph provides a
means for modeling high-order connections in multiple domains.
We integrate users’ multi-domain behaviors into a unified graph
and incorporate hyperedges to help preference transfer. Specifi-
cally, each user is viewed as multiple nodes w.r.t. to different do-
mains, where the representation of each user node characterizes the
domain-specific preference. For item nodes, because items’ proper-
ties are relatively static than users, we view each item as a single
node shared by all domains.

The core of the hypergraph structure constructed by H3Trans
is two novel types of hyperedges for improving user and item
representation learning. We first design a dynamic item transfer
module named Hyper-I. For a given domain, we dynamically seek
out related items from user-item interactions of other domains, and
construct a hyperedge (named hyperedge-i) to connect them as
cross-domain item relations. Hyperedge-i helps build relations be-
tween the items of different domains and capture users’ correlative
preference from the cross-domain behaviors without interference
information. Moreover, we propose a structure-aware aggregator
with attention mechanism to model the message passing procedure
through hyperedge-i, which adjusts item representation much more
correlative to the target domain and thus improves the recommen-
dation performance in multiple domains.
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We further introduce an adaptive user aggregation module named
Hyper-U. Each user is viewed as a separate node per domain, that
is, for a given user we can acquire separate user representations in
multiple domains. We utilize a hyperedge (named hyperedge-u) to
connect these separate user nodes of a given user, which aggregates
the scattered user preferences among multiple domains. To effec-
tively model the high-order connections among domains, we pro-
pose to employ attention mechanism into the message propagation
within such hyperedges. Hyperedge-u contributes to transferring
correlative preferences from source domains and capturing the com-
monality among multiple domains. Note that each domain can be
viewed as the target domain (and the others as the sources), thus our
proposed H3Trans can improve the quality of user representation
for all domains simultaneously.

The contributions are as follows:

e We propose H3Trans, a hierarchical hypergraph network
based correlative preference transfer framework for MDR.
To our knowledge, this is the first work that investigates
hypergraph-based preference transfer in MDR.

e To improve item representations for cross-domain transfer,
Hyper-I performs dynamic item transfer which helps extract
correlative preference from the cross-domain behaviors with-
out interference information.

e To model the high-order connections among users’ multi-
domain behaviors, Hyper-U aggregates users’ scattered pref-
erences in multiple domains and exploits the high-order
connections with an attention based propagation layer.

e Extensive experiments on large-scale production datasets
and public datasets are conducted to analyze our proposed
H3Trans, and the results demonstrate the superiority.

2 PRELIMINARY
2.1 Definition of Hypergraph

Compared to an ordinary graph, a hypergraph is a more general
topological structure where a hyperedge can connect an arbitrary
number of nodes. Formally, a hypergraph is composed of a node
set and a hyperedge set. The connectivity of a hypergraph can
be represented by an incidence matrix H, where hye = 1 if the
hyperedge e contains the node v, otherwise hye = 0. Besides, we
use E, to denote a set of hyperedges that connect to node v, and
use V, to denote a set of nodes connected to hyperedge e. Also, we
can define the neighbors N, of node v as a set of nodes that share
at least one hyperedge with node v.

2.2 Problem Definition

Given domains {Dm}rTnzl, where T denotes the number of domains.

For domain D,,, we utilize U™ and I" to denote its user ID set
and item ID set respectively. Let R™ € RIU™IXII™] denotes the
user-item interaction matrix of domain Dy,. If its entry r] = 1, it
means that the user u interacted with the item i under domain m.
In this work, we consider click behavior as the interaction type.

Given a specific domain D, the problem of single-domain rec-
ommendation is to estimate the scores of unobserved entries in one
interaction matrix R™, and we compute the score between a user
and an item as:

flr:fi = f(zu, zi | Dm) (1)
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Figure 2: Overall architecture of H3Trans. It contains two hyperedge-based modules: adaptive user aggregation (Hyper-U) and
dynamic item transfer module (Hyper-I). These two modules compose a hierarchical hypergraph neural network. Different
colors refer to different domains. Here we regard the first domain D; as target domain and the others are sources.

Here z,, and z; denote the learned representations of user u € U™
and item i € I" for domain Dy, and f(-) is the similarity function.
The problem of multi-domain recommendation is to estimate the
unobserved scores for all interaction matrices {’Rm}rTn:l. Specifi-
cally, the user set U is shared among all T domains, i.e.,U = Ul =
U? = ... = U7, because each user may actively interact with all
domains. For the item set I, each domain has its own set and we
denote the total item candidate poolas I =I* UT? U --- U IT.

3 METHODOLOGY

Fig. 2 shows the overall architecture of H3Trans. We introduce
the construction of multi-domain graph, and basic graph neural
network in subsections 3.1 and 3.2. Two core modules, namely
dynamic item transfer and adaptive user aggregation, compose
a hierarchical hypergraph neural network, detailed in subsection
3.3.1 and 3.3.2. Finally, the training procedure and optimization
strategy will be introduced in subsection 3.4.

3.1 Unified Multi-domain Graph

To improve recommendation performance in all domains, instead
of constructing individual graph for each domain, we integrate
users’ multi-domain behaviors into a unified graph G = (V,&).In
details, the node set V consists of user nodes and item nodes, i.e.,
V =UU I.For user nodes, considering the domain discrepancy
and the diversity of users’ multi-domain behaviors, it is necessary
to acquire separate representations for different domains. Thus we
regard each user as separate nodes positioned in different domains
(these nodes share the same attributes). Specifically, for a given
user u € U, it corresponds to T nodes (ul, u?, .- ,uT), thus the
relation between user node set size |U| and user ID set size |U]|

meets the condition of || = |U| - T. Each user node representation
characterizes user’s preference under a specific domain. For item
nodes, items’ properties are relatively static than users. Thus we
treat each item i € I as a single node across various domains. In
other words, each item i only corresponds to one node in the graph.
The item i’s node is also denoted as i.

The basic edge set collects the user-item history interactions
from all domain, i.e., R = (Rl, R2,... | RT), where R™ denotes the
user-item interaction matrix of domain 9,,. This work considers
click behavior as the interaction type. For an entry r;}; = 1, it means
that the user u has interacted with the item i under domain D,,, and
we build an interaction edge between the corresponding user node
u™ and item node i, denoted as e(u™, i). To clarify which domain the
edges belong to, we utilize distinct edge types for different domains.
For domain Dy, the edge subset is denoted as &, and the whole
edge set is the union of all domains, i.e., & = gltugu...uel.

With access to user-item interactions in any domain, it’s con-
venient to additionally leverage hyperedges to build cross-domain
relations and capture the correlative knowledge during transfer.

3.2 Basic Graph Neural Network

Based on the unified multi-domain graph, we employ basic GNN
that applies neighborhood aggregation scheme to obtain expres-
sive feature representation for nodes. The basic GNN includes four
modules: (1) an embedding module that transforms nodes’ sparse
attribute features into low-dimensional embedding vectors; (2) a
message-passing module with several layers that refine node repre-
sentations by aggregating information from neighbors; (3) a readout
module that generates nodes’ final representation; (4) a prediction
module that generates the prediction score.
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3.2.1 Embedding Module. This module maps each node into a
d-dimensional embedding vector x;m (or x;). For each user node
u™ € U (or item node i € 1), we acquire its embedding x,m (or
x;) from a learnable embedding look-up table X € RUUHITDxd
Noted that each user corresponds to T nodes, and these nodes share
the same initial embedding vector.

3.2.2 Message Passing Module. The message-passing module
consists of several layers that follow the neighborhood aggregation
scheme. It can be taken as a two-stage process to refine node rep-
resentations by aggregating information from neighbors. The two
stages are neighbor aggregation and node update:

Neighbor aggregation:
B, = AGGy ({R) 11 € Num)
0 (1) @
niy, = AGGr ({nl" 1w e M) )
Node update:
b = UPy (hG0 0 ) o
3

W _ (1=1) ()
n = UP (kY R)

where [ denotes the I-th message passing layer. hl(ll,z, and hgl) refer
to the hidden representation of user node 4™ and item node i
respectively. AGGy and AGGy are the aggregation functions for
user and item nodes. The same is to the node update function
UPy and UPj. There are a lot of designs for aggregate and update
function. Here we use mean pooling for the aggregator and linear

transforming for node update. Noted that the initial representation
(0) Q)

is acquired from embedding module, i.e., hum =xym, by = xi.

3.2.3 Readout Module. After obtaining L layers representations,
we utilize a readout layer to generate the final representation:

2o = Readout (h,g” llell,.. .,L]), ()

where the subscript v can denote user node u™ or item node i.
Common designs for the readout function include last-layer only,
concatenation, and weighted sum. Here we adopt last-layer only.

3.24 Prediction Module. The prediction module produces the
prediction score that how likely a user u would interact with item i
under domain Dy,. It is formulated as:

P = f(zum. zi) ®)

where f is the score function and we usually adopt similarity func-
tion such as inner product and cosine function.

3.3 Hierarchical Hypergraph Network

Based on the unified multi-domain graph, we further utilize hy-
peredge to explore the high-order connections among users’ multi-
domain behaviors. In this section, we will introduce two core
hyperedge-based modules: dynamic item transfer module (Hyper-I)
& adaptive user aggregation module (Hyper-U). These two modules
have a hierarchical connection structure and compose a hierarchical
hypergraph neural network.
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3.3.1 Hyper-I: Dynamic Item Transfer Module. In MDR, each
domain contains a set of items that is related to the domain’s topic
and marketing strategy. Due to the intrinsic difference, directly
transferring users’ cross-domain behaviors from multiple sources
domains to the target domain is not a good approach. It will intro-
duce interference information and degenerate the user representa-
tions. To extract correlative preference from users’ cross-domain
behaviors for transfer, we design a dynamic item transfer module,
namely Hyper-I. It dynamically adjusts the source item representa-
tions during transfer to be more relevant to a given target domain,
that contributes to capturing correlative user preferences from
source domains.

Take domain D; as target domain, and the others as source do-
mains. For each source domain Ds, before feeding item node hidden

representation hla) into message passing layers that acquire user
node representation by aggregating information from neighboring
items, we adjust the item representations to eliminate domain dis-
crepancy. Specifically, for each user’s interacted item under source
domain Dy, we seek out similar items from the target domain Dy,
and then construct a hyperedge (named hyperedge-i) to connect
these item nodes. This hyperedge contains a two-level relationship.
The first level is that the interacted source item is related to the
picked target items. The second level is that the picked target items
are also related to each other. We first introduce the method to seek
out the related target items, and then we design a structure-aware
hypergraph layer to adjust item representations.

Hyperedge Construction. For a given interacted item i in a
source domain Dg, we seek out a similar item set Si[ from the
target domain Dy, and construct a hyperedge to connect the source
item node i and the item nodes of picked item set Sl.t . We offer two
ways to get similar items: path-based and embedding-based.

e Path-based: Utilize co-occurrence relation among items. We
have such an assumption: if there is a user u that clicked on
both items i and j, then the two items are similar. Based on
this assumption, we design a walk path (i — u® — u’ — j)
and sample k items from the item set 7 of target domain as
similar items.

e Embedding-based: Path-based method is an intuitive way
but it seriously relies on the interaction history of users.
Embedding-based method makes use of the hidden represen-

tation of items hgl_l). It leverages the appropriate nearest
neighbor algorithm to find the top-k similar items from the
target domain, where the source item node i is query and
Tt is candidate set.

Graphormer Layer. To perform message passing within the
hyperedge, UniGNN [8] and AllSet [4] propose a message pass-
ing paradigm on the hypergraph. UniGNN rethinks the message-
passing layer of the basic GNN as a two-stage aggregation process.
In the first stage, for each hyperedge, use a permutation-invariant
function to aggregate the information of the nodes within it. In the
second stage, update each node with its incident hyperedges using
another aggregating function. The method of AllSet is similar.

We claim that the above message-passing paradigm fails to model
the two-level relationship within hyperedge-i. Instead, we employ
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attention mechanism [18] to adjust the item representation. More-
over, to effectively exploit the two-level relations and leverage the
topology structure within the hyperedge-i, we introduce the dis-
tance matrix of the shortest path among the picked nodes (denoted
as B) into the attention layers, as introduced in [25]. Fig. 2 illustrates
the details of this module. Specifically,

- - - .
B GHiypent (Concat (B, {n{™1 11 € st})) f0]
(6)
where GHpyper1(-) is the graphormer layer for Hyper-I module:
GHpypert (Hy) = Concat (Attny 1 (Hy), -+, Attng p(Hy)) WIO,

QI,pKI,pT
vdn, /P

- Q _ K _ v
Qup = MWy, Kip = HiWy ), Vip = HIW,

Attnyp (Hy) = softmax +®(B) | Vip,

)
here ®() is a learnable function shared across all layers that maps

the distance between every paired nodes to a scalar. W*Q, W*K R W*V,
and W2 are training parameters.

3.3.2 Hyper-U: Adaptive User Aggregation Module. After ad-
justing item representations with Hyper-I, we acquire the represen-
tations of separate user nodes by aggregating adjusted representa-
tion of their neighbor items. Each user corresponds with multiple
nodes that characterize the user’s domain-specific preference. Next
step is to transfer correlative user preferences from source domains
to the target and refine the user representation of target domain.
Noted that the preference transfer in MDR involves more than
one source. The key point is how to aggregate users’ scattered
preferences in multiple domains and adequately exploit the high-
order connections among them. Here we integrate a hyperedge-
based module: Hyper-U, to realize adaptive user aggregation.

Hyperedge Construction. We utilize hyperedge to connect nodes
that belong to the same user, and we name this hyperedge as
hyperedge-u. Within hyperedge-u, each separate node representa-
tion characterizes user’s interest preference under a specific domain.
The hyperedge-u connects these separate user nodes and bridges
the information propagation across domains, thus realizing adap-
tive preference transfer. Moreover, benefiting from that hyperedge
connects plural nodes, hyperedge-u can further exploit the high-
order (more than pairwise) connections among multiple domains.

Multi-head Attention Layer. We design a new message pass-
ing layer for the hyperedge-u to replace the original layer. For the
I-th layer, we first acquire user’s separate representations under

multiple domains, denoted as [h,(ll1)= hilz), RN hfllT)] Hyper-U mod-
ule take these separate representations as input, and then refine
these representations by aggregating users’ scattered preferences
and transferring knowledge from other domains. Considering the
domain discrepancy and diversity of users’ multi-domain behaviors,
we employ self-attention mechanism in the Hyper-U module to
adaptively fuse users’ cross-domain interest representations. To
refine representation for domain t after the Hyper-U module,
RO, D | = Mg ([ A0, 8 0])

ul’ "u2> w2
8)
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where MHA gy e,u (+) denotes the multi-head attention layer:
MHA yperu (Hu) = Concat (Attny1 (Hy), - - - , Attng p (Hy)) WS,
QU,pKU,pT
— | Vups
dp,, |P

Qu,p = HuWS, Kup = HUWS . Vup = HUWY,
©)

Attny p (Hy) = softmax(

here W*Q, WK, WY, and WP are trainable parameters. The multi-
head attention layer takes users’ separate nodes representations
as input and exploits the high-order connections with the self-
attention mechanism. For each domain, the corresponding node
can adaptively refine its preference representation by extracting
the correlative information from other domains.

3.4 Model Optimization and Time Complexity

These two hyperedge-base modules: dynamic item transfer mod-
ule (Hyper-I) and adaptive user aggregation module (Hyper-U),
compose a hierarchical hypergraph neural network. It realizes cor-
relative preference transfer and exploits the high-order connection
among users’ multi-domain behaviors.

For model optimization, we mix the multi-domain data and ran-
domly select a sample (u™, i) from domain Dy, for each training
step. Domain Dy, is taken as the target domain and the others
are source domains. Moreover, we employ a contrastive loss In-
foNCE [17] to learn more effective representations, which maxi-
mizes the agreements between positive pairs. Formally,

exp(sim(zl, zi) /1)
2i_exp(sim(z)}, zi_)/T)

L(u,i| Dpy) =-log (10)
where sim(-) stands for similarity measure function and we use
inner product. (u™,i_) is a randomly sampled negative pair that
r;"’L =0, and 7 is the temperature hyperparameter.

The time complexity of Hyper-U module is O(T?d+Td?), where
T is domain number and d is embedding dim. For Hyper-I module,
the time complexity is O (Tn(k2d + kd?)), where n is the number
of sampled neighbors and k is the size of similar item set. The main
limitation of H3Trans is computation cost and memory cost (incor-
porating hyperedges). Compared to the baselines that trains models
for multiple domains in parallel, H3 Trans unifies all domain data
and training time increases. In future work, we shall focus on effi-
cient algorithms, i.e., reducing memory cost via hyperedge dropout
and reducing time complexity via accelerating self-attention.

4 EXPERIMENTS

In this section, we conduct both offline and online experiments to
validate the effectiveness of our method. And the experiments are
intended to answer the following research questions:

e RQ1: How does our proposed method perform when com-
pared with other state-of-the-art GNN-based methods?

¢ RQ2: How do the different components (e.g., unified multi-
domain graph, adaptive user aggregation module, dynamic
item transfer module) contribute to the model performance?

e RQ3: Does our method help alleviate the behavior sparse-
ness issue and improve recommendation performance for
the relatively inactive users (with fewer interaction items)?
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Table 1: Dataset Statistics

Product Dataset Public Amazon Dataset
Domains  #user  #item  #click | Domains  #user  #item  #click

MDR-A  84.6M  6.3M 3.1B Books 1.67M  0.99M  26.8M
MDR-B 340M  14M 0.6B Music 0.11IM  0.12M 1.5M
MDR-C 247M  0.5M 0.3B Movie 0.23M  0.08M  3.1IM
MDR-D 29.1M  0.6M 0.2B - - - -

e RQ4: Does H3Trans achieve improvement when deployed
to our advertising system?

4.1 Experimental Settings

4.1.1 Datasets. We conduct extensive offline experiments on both
the public dataset and the product dataset.

Public Dataset: Amazon dataset [16] is a popular dataset to con-
duct experiments of multi-domain recommendation. The dataset
provides dozens of domains and the frequently-used domains are
Books, Movies and TV (Movie), and CDS and Vinyl (Music). Fol-
lowing existing research, we take binarize the ratings to 1 and 0
(the ratings higher or equal to 4 as positive and others as negative.)
Besides, we filter the users and items with less than 5 interactions.

Product Dataset: The product dataset is collected from four
real-world scenarios from an industry advertising platform, named
MDR-A, MDR-B, MDR-C, and MDR-D. These four sub-datasets
share the same user set and have overlapped items. Each subset
consists of users’ interacted items. We additionally filter the datasets
to retain users/items with at least 5 interactions. Table 1 lists the
statistics of both the product dataset and the public amazon dataset.

4.1.2 Compared methods. We compare H3Trans with follow-
ing strong baselines. Except for the base model, all baselines attempt
to transfer information from other domains in different ways.

e Base. Base method constructs a user-item bipartite graph
and trains models individually for each domain with its user
behavior data.

e PPGN. PPGN [31] fuses the interaction information of mul-
tiple domains into a graph and shares the features of users
learned from the joint interaction graph. Notes that one user
only has one node within the joint graph.

e MGNN. MGNN [29] integrates users’ multi-domain behav-
iors and constructs the unified multi-domain graph. Nodes
belonging to the same user share the same attribute. MGNN
learns domain-specific representation for user nodes.

e PCRec. PCRec [20] adopts a pre-training and fine-tuning
diagram to transfer knowledge from the source domain to
the target. Here we first pre-train a graph model on the joint
graph and then fine-tune it on each domain.

e BiTGCF. BiTGCF [13] is proposed for dual-target recom-
mendation. It connects common users of both domains as
bridge and designs a feature transfer layer to realize the two-
way transfer of knowledge across two domains. Here we
randomly pick two domains to realize the combination layer.

e BiTGCF+. BiTGCF+ is an extended version of BITGCF. Here
we modify the feature transfer layer and extend it to multi-
domain recommendation.

4.1.3 Evaluation Protocol. We adopt the widely used leave-one-
out evaluation method. Specifically, we take the last interaction
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from each user’s interaction history as the test set, and the remain-
ing are utilized for training. For users in the testing set, we follow
the all-ranking protocol [22] to evaluate the top-K recommendation
performance. For product dataset, we report the average HitRate@K
(HR@K) and Mean Reciprocal Rank (MRR) on each domain. For
public dataset, we report the HR@K and NDCG@K as these two
metrics are more popular of public experiments.

4.1.4 Implementation Details. We provide the implementation
details of our proposed model and baselines. For fair comparison,
each of graph neural network models has two layers, and the hidden
embedding dimensions are set as [128, 64]. We sample k = 20
related items to build hyperedge-i in Hyper-I module. For model
training, we set batch size N = 512 and adopt adam optimizer [11],
where the learning rate is set to 0.01.

4.2 Performance Comparison (RQ1)

Table 2 and Table 3 present the experimental results of H3Trans
compared with other baselines. From these two tables, we have the
following observations.

e Base method performs poorly on all domains, which indicates
that individually training model for each domain limits the rec-
ommendation performance in multi-domain recommendation.

e PPGN mixes the multi-domain data and constructs a joint graph
for model training. As a result, it achieves large improvement in
most domains. But it still has negative effects on some domains
such as MDR-B, because different domains share the same user
representation and neglect the user’s domain-specific preferences.
The user representation is dominated by the data-rich domain.

o MGNN takes account of both the common feature and the domain-
specific feature for different domains. which brings improvement
to the recommendation service. Note that common feature is
only acquired by the shared node attributes. The information
transfer among domains is limited.

e PCRec performs transfer learning by adopting the pre-training
and fine-tuning diagram. Pre-training on the joint graph helps
learn users’ common preferences among domains. Then fine-
tuning on domain’s individual graph make the user node repre-
sentation more preferable for each domain. However, fine-tuning
is more time- and space-consuming for multi-domain recommen-
dation.
BiTGCF and BiTGCF+ are two competitive baselines in our ex-
periments. BiTGCF leverages a combination layer to realize the
two-way transfer across domains. Here we extend the feature
transfer layer of BITGCF to multiple domains as BITGCF+. We
can see that BitGCF+ achieves larger improvement than BitGCF
because it introduces more domains to perform multi-domain
recommendation. But the improvement is still limited because we
just simply sum user’s multi-domain representations and neglect
the high-order connections among them.
H3Trans achieves the best performance with significant improve-
ment on all metrics of all domains. This indicates that H3Trans
benefits from learning the high-order connections among mul-
tiple domains extracted by Hyper-U module and transferring
correlative information via Hyper-I. The high-quality representa-
tions learned from the hypergraph enhance the recommendation
performance in all domains.
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Table 2: Main results on product dataset

WWW ’23, April 30-May 4, 2023, Austin, Texas, USA

Method MDR-A MDR-B MDR-C MDR-D
Mrr HR@20 HR@50 Mrr HR@20 HR@50 Mrr HR@20 HR@50 Mrr HR@20 HR@50
Base 0.0368 2.37% 6.46% 0.0625 4.87% 12.60% | 0.0640 4.78% 13.20% | 0.0753 5.11% 12.65%
PPGN (Mix) | 0.0481 2.98% 8.47% 0.0603 4.22% 11.61% | 0.1017 8.58% 18.99% | 0.1131 7.60% 17.59%
MGNN 0.0544 3.68% 8.11% 0.0699 5.34% 14.28% | 0.1079  12.22%  21.34% | 0.1428 10.67%  21.81%
PCRec 0.0635 4.38% 9.71% 0.0845 7.31% 16.63% | 0.1546  14.71%  25.99% | 0.1738  15.16%  26.59%
BiTGCF 0.0663 4.59% 10.61% | 0.0986 8.66% 18.46% | 0.1591  15.48%  26.49% | 0.1577 13.73%  23.66%
BiTGCF+ 0.0750 5.08% 12.31% | 0.1237 9.87% 20.71% | 0.1713  16.15%  28.63% | 0.1685 14.76%  25.85%
H3Trans 0.1171  7.20% 16.79% | 0.1686 14.29% 28.65% | 0.2084 18.78% 34.89% | 0.2158 18.69% 32.73%
Table 3: Main results on public amazon dataset 2T oA i % [Eas oA —
175 —®- MDRB e - MDRB AT
Books Music Movie 150 - moro / ® Zlhems -
Method = / IE—y _ /4 _.
NDCG HR@20 | NDCG HR@20 | NDCG HR@20 £ s VAL gas e
Base 00270  4.71% | 0.0631 13.39% | 0.0433  10.45% gm // —r - %20 // 7 I
PPGN | 0.0289  4.96% | 0.0660 13.93% | 0.0473  11.23% T 4 P b
MGNN 0.0311 5.12% 0.0672 14.14% 0.0465 11.03% so g7 = o o -
PCRec 0.0331 5.31% 0.0742 15.67% 0.0489 11.52% 25w r/v
BitGCF 0.0359 5.57% 0.0694 14.65% 0.0495 11.78% 1 2 3 4 1 2 3 4
BitGCF+ | 0.0381  578% | 00719  15.29% | 0.0509  12.02% et domans et domans
BT Figure 3: Performance comparison over different number of
rans ‘ 0.0399 5.97% ‘ 0.0761 16.01% | 0.0524 12.33%

4.3 Ablation Study (RQ2)

For further analysis, we compare different variants of H3Trans on
the product dataset for ablation study, and the results are listed
in table 4. Vanilla is a basic graph model trained on the unified
multi-domain graph. User nodes learn the common interest only
through the shared node attributes.

4.3.1 Effect of Hyper-U module: HU adds the Hyper-U module
but without the attention mechanism based layer. It only utilizes
a vanilla combination layer to combine users’ separate represen-
tations from multiple domains. HU+ integrates our self-attention
mechanism based message passing layer into HU. From the table,
we can see that aggregating users’ scattered preferences and model-
ing the high-order connections among multiple domains could help
refine the user representation for each separate domain. And the
self-attention mechanism contributes to further improving the rep-
resentation quality, because the attention layer adaptively extracts
correlative knowledge from source domains.

4.3.2 Effect of Hyper-l module: PHI and EHI are two models
that additionally integrate the Hyper-I module, and equipped with
path-based or embed-based method to seek out similar items re-
spectively. Table 4 shows that these two methods perform better
than HU+, which indicates that the dynamic item transfer module
could eliminate the domain discrepancy and adjust the latent item
representation more correlative to the target domain without inter-
ference information. Besides, EHI achieves a marginal improvement
than PHI, that shows embed-based method is a little better than
path-based method. EHI+ is the best variant of our model, which
further employs the graphormer layer to exploit the structure in-
formation within the hyperedge-i. It consistently shows around 1%
on HR@20 and 2% on HR@50.

domains in MDR

The itemset size of each domain ranges from tens-of-thousands
to millions, while the size of selected correlative itemset is K. The
value of K is a key hyperparameter: A too small value brings un-
stable training. A too large value increases computation cost, and
different source items usually retrieve similar itemsets that lacks of
discriminatory information.

4.3.3 Effect of multiple domains: Multi-domain recommenda-
tion jointly optimizes the recommendation performance of all do-
mains. Intuitively, with more domains, we can access more users’
behaviors to better characterize users’ interest. Here we analyze the
effect when introducing different numbers of domains to perform
multi-domain recommendation. The results are reported in figure 3.
We can see that it indeed achieves better performance when intro-
ducing more domains, because we can transfer knowledge from
more source domains, and H3Trans help exploit the high-order
connections among them. Additionally, the marginal improvement
decreases as more domains are introduced.

4.4 Alleviating Behavior Sparseness (RQ3)

As stated before, GNN-based methods suffer from the behavior
sparseness issue, and here we conduct a detailed analysis to test
the improvement on behavior-sparse users. Specifically, we split
the users into four groups G1, G2, G3, G4, and G5 in the order
of increasing number of interactions. The larger the GrouplD is,
the more behaviors the users have collected. Figure 4 reports the
percentage increase compared with the Base model. We can find
that the improvement achieved in the first three groups is more
significant than that of the last two. We conclude that H3 Trans help
improve more for relatively inactive users (with fewer user-item
interactions), indicating that H3 Trans alleviates the sparseness of
user behaviors by transferring knowledge from other domains.
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Table 4: Ablation study on product dataset. Methods refer to different variants of H3Trans.

Method MDR-A MDR-B MDR-C MDR-D
Mrr  HR@20 HR@50 | Mrr HR@20 HR@50 | Mrr HR@20 HR@50 | Mrr HR@20 HR@50
Vanilla | 0.0544 3.68% 8.11% 0.0699 5.34% 14.28% 0.1079 12.22% 21.34% 0.1428 10.67% 21.81%
HU 0.0750 5.08% 12.31% 0.1237 9.87% 20.71% 0.1712 16.15% 28.63% 0.1685 14.76% 25.85%
HU+ 0.0894 5.56% 13.68% 0.1383 10.53% 23.08% 0.1848 17.01% 29.82% 0.1846 16.38% 28.48%
PHI 0.1016 6.35% 15.22% 0.1509 11.96% 24.52% 0.1887 17.58% 30.92% 0.1913 17.21% 29.80%
EHI 0.1051 6.53% 15.68% 0.1581 12.34% 25.54% 0.1958 17.93% 31.64% 0.1937 17.84% 30.62%
EHI+ 0.1171 7.20% 16.79% | 0.1686 14.29% 28.65% | 0.2084 18.78% 34.89% | 0.2158 18.69% 32.73%
e m e | e between domain-specific objectives and inter-domain relationships
g T e with a new multi-gate expert strategy.
® 100 © 100
. £ 5.2 GNNs for Cross-domain Recommendation
. . Inspired by the success of graph neural networks[6, 12], researchers
o @ ;;R,A S o o o ;ZR,B oo have taken efforts to exploit the user-item interaction behavior
200 — 20 — graph. GNN-based methods [7, 22, 26] suffer from the sparseness
150 P Wi 130 e e of user behaviors, and some researchers have exploited to allevi-
. 2 ate it by transferring information from other domains [13, 20, 31].
% % PPGN [31] fuses the interaction information of two domains into a
? ” graph and learns shared features for users. Wang et al. [20] propose
TTa @ e - o TTa @ e - C a pre-training and fine-tuning diagram to transfer information to
(c) MDR-C ! (d) MDR-D roup

Figure 4: Performance comparison over different user
groups (percentage increase relative to Base model)

4.5 Online Experiment (RQ4)

We have deployed H3Trans online to the retrieval module of our
advertising system for an emerging scenario, and conducted online
A/B test for one week. For fair comparison, we follow the same
configuration with the best retrieval model deployed online [20].
The online metrics include CTR, conversion rate (CVR), gross mer-
chandise volume (GMV) and return on investment (ROI).

We observe that H3Trans achieves +2.8% lift on CTR, +10.9%
lift on CVR, +6.7% lift on GMV and +7.3% lift on ROI, and the daily
improvement over baseline is stable. The uplift is mainly from users
having lowest activity level, verifying that H3Trans learns high-
quality embeddings for inactive users through preference transfer.
Therefore H3Trans improves the important online metrics and
promotes the performance to our system.

5 RELATED WORK
5.1 Multi-domain Recommendation

Multi-domain recommendation aims to improve recommendations
performance of all domains by transferring knowledge from related
domains. MCF [30] and ICAN [24] consider multiple collabora-
tive filtering tasks in different domains simultaneously and exploit
the relationships between domains. Ma et al. [15] further intro-
duce cross-media content information. Some works focus on the
users’ multiple behaviors. MBGCN [10] and MGNN [29] propose a
multi-behavior graph convolutional network to capture behaviors’
different influences on target behavior. Furthermore, by consider-
ing each domain as a task, multi-task approaches can be directly
applied in MDR. For general MDR, MMOoE [14] models the tradeoffs

the target domain. Liu et al. [13] realizes the two-way transfer of
knowledge across two domains with a bi-directional feature transfer
module. Zhu et al. [32] propose a graphical and attentional model
to combine the embeddings of common users from both domains,
thus enhancing the quality of user embeddings and improving the
recommendation performance on each domain. However, they fail
to model high-order connections among more domains.

5.3 Hypergraph Learning for Recommendation

Hypergraph, as a more general topological structure to model high-
order connections, has been exploited in recommendation [2, 9,
21, 23, 27, 28]. Xia et al. [23] models session-based data as a hy-
pergraph and then propose a hypergraph convolutional network
for session-based recommendation. Yu et al. [27] propose a multi-
channel hypergraph convolutional network to enhance social rec-
ommendation by leveraging high-order user connections. Zhang
et al. [28] incorporate the complex tuple-wise correlations into a
hypergraph and propose a self-supervised hypergraph learning
framework for group recommendation. Our work is the first to
investigate hypergraph learning in multi-domain recommendation,
which can exploit the high-order connections among multiple do-
main and realize correlative preference transfer.

6 CONCLUSION

In this paper, we propose an correlative preference transfer frame-
work with hierarchical hypergraph network (H3 Trans) to improve
multi-domain recommendations. H3 Trans constructs a unified multi-
domain graph and integrates two hyperedge-based module: adap-
tive user aggregation and dynamic item transfer. H3 Trans not only
exploits high-order connections among users’ scattered preferences
in multiple domain, but also transfers correlative user preference to
alleviate the behavior sparseness of each single domain. Extensive
experiments demonstrate the superiority of our method.
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